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Time accurate local time stepping for the unsteady shallow
water equations
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SUMMARY

Two time accurate local time stepping (LTS) strategies originally developed for the Euler equations
are presented and applied to the unsteady shallow water equations of open channel �ow. Using the
techniques presented allows individual cells to be advanced to di�erent points in time, in a time accurate
fashion. The methods shown are incorporated into an explicit �nite volume version of Roe’s scheme
which is implemented in conjunction with an upwind treatment for the source terms. A comparison
is made between the results obtained using the conventional time stepping approach and the two LTS
methods through a series of test cases. The results illustrate a number of bene�ts of using LTS which
included reduced run times and improved solution accuracy. In addition it is shown how using an
upwind source term treatment can be bene�cial for �ows dominated by the geometry. Copyright ?
2005 John Wiley & Sons, Ltd.

KEY WORDS: local time stepping; Roe’s approximate Riemann solver; upwind source terms; open
channel; shallow water; unsteady �ow

1. INTRODUCTION

The �ow in open channels is frequently modelled using the shallow water equations for which
both 1D and 2D formulations exist. Advances in the numerical treatment of these equations
has been made by following new developments in the �eld of aeronautics. Whereas much
research into computational hydraulics has focused on using methods such as the Preismann or
McCormack schemes [1, 2], surveying more recent literature shows the increasing application
of upwinded high resolution shock capturing methods [3, 4], which have proved successful
for application to the Euler equations. Such techniques are generally based on the Godunov
formulation and a solution is obtained by solving a series of Riemann problems. In particular
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776 A. J. CROSSLEY AND N. G. WRIGHT

the �ux di�erence splitting approach of Roe has proved especially popular for open channel
�ows [5–9].
In this paper, another concept originally developed for the Euler equations is applied to the

shallow water equations, namely the application of local time stepping, or temporal adaptivity.
Following the conventional approach (global time stepping), the solution is advanced in time
through a series of updates in which all the cells are integrated to the same point in time.
When an explicit scheme is used, this necessitates using the smallest permissible time step for
the mesh based on stability criteria and the CFL condition. In the case of an implicit method,
though stability constraints may not place a restriction of the size of the time step, the issue
of accuracy is still a consideration, which in turn may limit the size of the time step used.
Implicit adaptations of explicit schemes can be formulated (see Reference [10] for example),
which then may permit the use of higher CFL numbers. However, generally these methods
are less accurate than the corresponding explicit counterparts, particularly if discontinuities are
present in the �ow. In contrast to global time stepping, the idea behind local time stepping is
to integrate di�erent cells to di�erent points in time using each cell’s individual permissible
time step. This concept is readily applied to steady state problems in which a pseudo time
stepping strategy is adopted and used to accelerate convergence, and reduce the overall run
time. The application to transient problems, however, is not so straightforward. Here it is
necessary to ensure that information is correctly propagated between di�erent cells. In this
paper two time accurate local time stepping strategies developed for aeronautical �ows are
applied to the 1D shallow water equations. The algorithms are implemented in conjunction
with Roe’s scheme together with an upwind treatment for the source terms. The concept of
local time stepping may equally be applied to other numerical methods and serves not only
to reduce run times, but can also improve solution accuracy.

2. THE 1D SHALLOW WATER EQUATIONS

The 1D shallow water or Saint Venant equations which can be used to represent the �ow in
open channels, can be written as [1]

@A
@t
+

@Q
@x
=0

@Q
@t
+

@
@x

(
Q2

A
+ gI1

)
= gA(So − Sf ) + gI2

where A is the cross sectional area in m2, Q is the discharge in m3 s−1, So is the bed slope
and Sf represents the friction slope which can be de�ned by either the Manning or Chezy
formula. I1 is an ‘e�ective pressure’ and can be evaluated from

I1 =
∫ h(x)

0
[h(x)− �]�(x; �) d�

where h is the level of the free surface, � is the depth integration variable and � corresponds
the channel width at a particular depth. For a rectangular channel, I1 = A2=2b, where b is the
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width of the channel. I2 is a wall pressure term represented by

I2 =
∫ h(x)

0

(
h(x)−

[
@�
@x

]
h=h0

)
d�

which is equal to zero for a prismatic channel. This particular formulation of the equations was
chosen as the equations are written in conservative form and can be classi�ed as conservation
laws for which Riemann based methods were designed. Using vector notation it is convenient
to express the system of equations in the form

Ut + Fx=R (1)

where

U =

(
A

Q

)
; F =

(
Q

Q2=A+ gI1

)
and R=

(
0

gA(So − Sf ) + gI2

)

Written in this form, the vector U is the vector of conserved variables, F is the �ux vector
and R is the source term vector. It is also possible to write Equation (1) in the form

Ut + JUx=R

using the Jacobian matrix J of the �ux vector F where

J =
@F
@U

=

(
0 1

c2 − u2 2u

)

noting that u=Q=A and c=
√
(gA=B) (B is the channel width at the free surface) together

with corresponding eigenvalues and eigenvectors

�1;2 = (u± c) and e1;2 =

(
1

u± c

)

3. ROE’S SCHEME

Roe’s scheme was initially developed for the Euler equations [11] and subsequently extended
to the Saint Venant equations for channels of in�nite width by Glaister [5]. Numerous authors
have since applied the method to both 1D and 2D shallow water �ows and the formulation
adopted here is as reported by Alcrudo et al. [6]. The method is based on the approach
of Godunov, which involves solving a series of Riemann problems at the cell interfaces
using the cell values UL and UR in order to evaluate the numerical �ux used to update the
homogeneous equations. By introducing a local linearization, the exact Riemann problems are
replaced by approximate ones, from which it becomes necessary to determine an approximate
Jacobian matrix J̃ of the form

J̃ =

(
0 1

c̃2 − ũ2 2ũ

)
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with eigenvalues and eigenvectors

�̃1;2 = (ũ± c̃) and ẽ1;2 =

(
1

ũ± c̃

)

where the values denoted by tildes are known as the Roe averaged quantities. Following Roe’s
analysis, the expressions for ũ and c̃ are found to be

ũ=
√
ALuL +

√
ARuR√

AL +
√
AR

c̃=

⎧⎪⎨
⎪⎩

g
I1R − I1L
AR − AL

if AR − AL �=0

(cL + cR)2 if AL =AR

(2)

Note that using Equation (2) for c̃ it is necessary to consider the case where AL =AR. Alter-
natively Garc��a-Navarro and V�azquez-Cend�on [12] have proposed using the form

c̃=

√
g
2

[(
A
B

)
L
+
(
A
B

)
R

]

which is the approximation used in this work. The conservative formulation of the scheme is
utilized whereby the numerical �ux is formulated as

F∗
i+1=2 =

1
2
(Fi+1 + Fi)− 1

2

2∑
k=1

�̃k
i+1=2|�̃k

i+1=2|ẽki+1=2 (3)

where �̃k
i+1=2 are the wave strengths de�ned by

�̃1 =
(c̃ − ũ)�A+�Q

2c̃

�̃2 =
(c̃+ ũ)�A −�Q

2c̃

given that the � operator refers to the di�erence between the right and left values of the
Riemann problem. The entropy �x proposed by Harten [13] is adopted whereby the value of
|�̃| in Equation (3) is re-evaluated using

|�̃|=
⎧⎨
⎩

|�̃| if |�̃|¿�

� if |�̃|¡�

where

�= max(0; �̃(UL;UR)− �(UL); �(UR)− �̃(UL;UR))
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and the update is represented by

U n+1
i =U n

i − �t
�x

(�F∗
i+1=2 −�F∗

i−1=2) (4)

The scheme may also be extended to be second-order in space and time, and this is achieved
through modifying the �ux de�nition using the formulation

F∗
i+1=2 = (Fi+1 + Fi)− 1

2

2∑
k=1

�̃k
i+1=2|�̃k

i+1=2|ẽki+1=2

+
1
2

2∑
k=1

’(rki+1=2)�̃
k
i+1=2|�̃k

i+1=2|
(
1− �t

�x
|�̃k

i+1=2|
)
ẽki+1=2

Cast in this form, the numerical �ux can be seen as the �rst-order Roe �ux coupled with
a second-order correction term which is limited via the �ux limiter function, ’, with the
argument

rki+1=2 =
�̃k
i+1=2−s

�̃k
i+1=2

and s=sign(�̃k
i+1=2)

A number of limiter functions [14] are available which serve the purpose of limiting the amo-
unt of the second-order correction applied in regions of steep gradients. In the results shown
in which the second-order form of the scheme is utilized, the Superbee limiter is used i.e.

’(r)=
r + |r|
1 + r

4. SOURCE TERM TREATMENT

The bene�ts of employing an upwind treatment to evaluate the numerical �ux have been
established for some time and generally a less sophisticated approach has been adopted to
evaluate the source terms. However, more recently it has been demonstrated that it can be
bene�cial to incorporate upwinding into the source term treatment which in turn balances the
�ux and the source terms [15–17]. In this work the concept originally proposed by Berm�udez
and V�azquez [16] is adopted which demonstrated how to construct an upwind treatment in
the case of non-uniform beds (varying So) on the basis of not perturbing an equilibrium
solution. The treatment is developed in conjunction with the scheme used to evaluate the
numerical �ux and hence the upwinding can be introduced by utilizing the coe�cients within
the Riemann solver. The original method developed for the �rst-order Roe’s scheme has
been extended by V�azquez-Cend�on [18] and Garc��a-Navarro and V�azquez-Cend�on [12] to
non-prismatic rectangular channels and non-uniform grids. Burguete and Garc��a-Navarro [19]
further developed the method for second-order formulations of Roe’s scheme.
The basis of the approach is to determine an expression for Ri to be used in the update

formula

U n+1
i =U n

i − �t
�xi

(�F∗
i+1=2 −�F∗

i−1=2) + �tRi
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where Ri is such that in the case of zero discharge, the numerical �ux and source terms
balance so that the solution is not perturbed, deemed ‘Property C’ whereby

(�F∗
i+1=2 −�F∗

i−1=2)=Ri�xi

and the source term is de�ned as a cell average value

Ri=
1
�xi

∫
Ci

R(x;U) dx

given that cell Ci corresponds to

Ci=
(
xi − xi − xi−1

2
; xi +

xi − xi−1
2

)

To introduce upwinding into the source term representation, the numerical source term is
constructed from left and right contributions, i.e.

Ri=
1
�xi

[
xi − xi−1
2

 Li−1=2 +
xi+1 − xi
2

 Ri+1=2

]

In the case of a uniform mesh, where the mesh spacing is �x, following the decomposition,
the source term within cell i is evaluated using left and right contributions where using the
contribution from the left is calculated using the values at the left interface (i − 1

2 ) and the
contribution from right uses the (i + 1

2) values, i.e.

Ri�x=
1
2
((HL�)i−1=2 + (HR�)i+1=2)=

1
�x

(
�x
2
( L)i−1=2 +

�x
2
( R)i+1=2

)

where  L =HLR,  R =HRR and R=(�̃1; �̃2)T. The exact form of � depends upon the geometry
of the problem under consideration. In the case of a rectangular channel (B= b) it can be
shown that �̃1 =− �̃2 = �̃ where

�̃= g
�x
2c̃

(
−Ãzx − ÃS̃ f +

Ã2

2b̃2
bx

)
=

g
2c̃

(
−Ã�z − ÃS̃ f +

Ã2

2b̃2
�b

)

and the values Ã, B̃, S̃ f , �z, and �b need to be de�ned. It has been shown [12] that in the
case of a smooth rectangular channel with varying bottom topography, using the de�nitions

�z= zi+1 − zi; Ã= h̃b̃; h̃= 1
2 (hi+1 + hi); b̃= b (5)

Property C is satis�ed exactly. For a non-prismatic rectangular channel, where I2 is non-zero
using the preceding de�nitions does not lead to Property C being satis�ed. This stems from
the fact that in this instance

�F �=A�U

as now

�F =

⎛
⎜⎝

�Q

�
(
Q2

A
+ gI1

)
⎞
⎟⎠=

⎛
⎜⎝

�Q(
g
A
b

− Q2

A2

)
�A+ 2

Q
A
�Q − gA2

2b2
�b

⎞
⎟⎠
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such that

�F =A�U +V where V =

⎛
⎜⎝

0

−gA2

2b2
�b

⎞
⎟⎠

Garc��a-Navarro and V�aquez-Cend�on [12] accommodate V as an additional source term by
modifying R such that

R̂=R−V
which is incorporated into �̃ whereby

�̃=
g
2c̃

(
−Ã�z − ÃS̃f +

Ã2

b̃2
�b

)

using

�b= bi+1 − bi and b̃= 1
2 (bi+1 − bi)

However, analysis shows that although this results in the �ux and source terms balancing for
the mass equation, the solution to momentum equation will be perturbed. This can be avoided
by using the original de�nition of �̃ together with h̃=

√
hihi+1 and Ã= 1

2(bihi + bi+1hi+1) for
the momentum equation. An alternative approach which permits one set of de�nitions for �̃
and the average values in Equation (5) to be used and leads to Property C being satis�ed for
both equations is to modify the numerical �ux which becomes

F∗
i−1=2 =

1
2
(Fi−1 + Fi) +Vi−1=2 − 1

2

2∑
k=1

�̃k
i−1=2|�̃k

i−1=2|ẽki−1=2

F∗
i+1=2 =

1
2
(Fi + Fi+1)−Vi+1=2 − 1

2

2∑
k=1

�̃k
i+1=2|�̃k

i+1=2|ẽki+1=2

where

Vi−1=2 =

⎛
⎜⎝

0

−hi−1hi

2
(bi − bi−1)

⎞
⎟⎠ and Vi+1=2 =

⎛
⎜⎝

0

−hihi+1

2
(bi+1 − bi)

⎞
⎟⎠

Further consideration is necessary to apply the treatment to non-rectangular channels and this
has been conducted by the authors of this paper. In the case of a prismatic trapezoidal channel,
a logical choice for the average quantities would be

h̃= 1
2 (hi + hi+1); B̃= b+ 2mh̃; Ã= h̃(b+ 2mh̃)

where m is the gradient of the side walls of the channel. Following this selection, which
is consistent with the rectangular values with m=0, it can be shown that Property C is
maintained exactly in the case of zero discharge for the continuity equation. However, this
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is not the case for the momentum equation, for which analysis of the update formula shows
there is a discrepancy of the form

LHS− RHS= �t
2�x

gm
12
[(hi − hi−1)3 + (hi+1 − hi)3]

Following the approach for non-prismatic channels, this is accommodated by introducing an
additional term to the momentum equation such that an equilibrium solution will be main-
tained.

5. LOCAL TIME STEPPING

With a normal time integration technique (subsequently referred to as global time stepping or
GTS) a global time step is established that guarantees stability for all cells and the solution
in every cell is advanced to the same point in time. The strategy behind local time stepping
(LTS) is to use each cell’s maximum stable time step rather than the global value resulting
in di�erent cells being advanced to di�erent points in time. Theoretically this should prove
more e�cient and reduce the computation time. The di�culty with this approach lies in
ensuring that the correct integration procedure is followed such that information is correctly
propagated between di�erent regions of the �ow in a time accurate fashion. If an e�cient
means of determining the sequence cannot be devised, then the advantages of using such
a technique disappear, as the implementation costs may outweigh the potential savings. It
should be noted that in the case of steady �ows, the temporal transmission of information is
not a consideration, and local time stepping can be implemented without the need for a time
integration strategy when a pseudo transient algorithm is adopted. Thus local time stepping
is commonly used to accelerate the convergence of solutions in steady state problems.
To illustrate the concept of local time stepping, consider a set of homogeneous conservation

laws. For any given cell, i, the update from time level n to n+ 1 can be written as

Un+1
i =Un

i − �t
�xi

(Fn
i+1=2 − Fn

i−1=2)

When global time stepping is used the value of �t is calculated based upon stability criteria
and the same value is used throughout the mesh. For a given explicit scheme, for example
Roe’s scheme, the time step must be chosen such that the Courant–Friedrichs–Lewy (CFL)
number does not exceed a speci�ed value. For many methods this results in a condition of
the form

v
�t
�xi

61

where v is a characteristic wave speed representing the speed of propagation. In the case of
the Saint Venant equations, the CFL condition takes the form

(|ui|+ ci)
�t
�xi

61 (6)

when Roe’s scheme is used. To advance from time level n to n+1, a time step value denoted
�ti is calculated for each cell based on Equation (6). The minimum of all the values is then
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selected as the time increment such that �t= min(�ti) and each cell is advanced by this
amount. In contrast to this, the basis of local time stepping is to advance individual cells by
the local permissible value �ti such that the update becomes

Un+1
i =Un

i − �ti
�xi

(Fn
i+1=2 − Fn

i−1=2)

In this paper two procedures for applying local time stepping to time-dependent �ows are
outlined. These strategies were originally demonstrated to be successful for the Euler equations
and have been further developed by the authors for application to the Saint Venant equations.

5.1. Local time stepping using a frozen �ux (LTS1)

The basis of the procedure outlined by Zhang et al. [20, 21] is to perform a series of temporal
updates in the usual fashion, i.e. following a GTS approach, but using the same ‘frozen’ �ux
value as calculated from a previous time level where possible. In essence the method is a
pseudo local time stepping strategy. The technique reduces the number of �ux evaluations
necessary and hence reduces the computer costs and run time, even though the same number
of temporal updates is being performed. For an individual cell, the frozen �ux can be used until
the cell has been integrated to a point in time corresponding to the cells maximum permissible
time step (calculated at the time the �ux evaluation was performed). Once that point is
reached a new �ux is calculated. The technique was originally illustrated for homogeneous
equations, as the method is only concerned with modifying the �ux calculations. It was noted
by the original authors that it became more bene�cial to employ the technique as the level
of complexity of the �ux function increased.
Following the traditional approach and again considering a set of homogeneous equations,

given that �t represents the global minimum time step, then for each cell i there will be
some integer value of k which satis�es

ki�t6�ti¡(ki + 1)�t

On stability grounds, it is then possible to advance speci�c cells to the point in time
ki�t using

Un+1
i =Un

i − ki�t
�xi

(Fn
i+1=2 − Fn

i−1=2)

This may also be achieved using a series notation

Un+1
i =Un

i − �t
�xi

ki∑
1
(Fn

i+1=2 − Fn
i−1=2)

or equivalently by a series of updates which can be represented as

Un+j=ki
i =Un+(j−1)=ki

i − �t
�xi

(Fn
i+1=2 − Fn

i−1=2) (7)

where j=1; 2; : : : ; ki, and the �ux values used in the calculations are frozen at time level n. In
contrast to this, any cells that have a k value of 1 can only be advanced by a time increment
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of �t on the basis of stability. In an analogous form to Equation (7), these cells can be
advanced to a speci�c point in time using a series of updates whereby

Un+j=ki
i =Un+(j−1)=ki

i − �t
�xi

(Fn+(j−1)=ki
i+1=2 − Fn+(j−1)=ki

i−1=2 )

and the �uxes are re-evaluated for each calculation. Note that for the purposes of illustration,
�t has been considered constant, however in practise it must be calculated after each update,
i.e. for each value of j.
Denoting kmax as the maximum k value throughout the grid, then a single global time step

advances the solution from time level n to n+ 1, which is equivalent to a time increment of
kmax�t. This is achieved through a series of j local time steps where j=1; 2; : : : ; kmax. For
the �rst local time step, the solution is advanced by �t. Subsequently, a new value of �t
is calculated after each local time step and the solution is advanced by successive steps until
the end of the global time step is reached.
To assess which cells can use a frozen �ux, individual cells are assigned to two groups

at the beginning of the global time step. The �rst group, G1 consists of cells which cannot
utilize a frozen �ux, and so the �ux must be evaluated at each local time step. The second
group, G2 includes the remaining cells to which are able to use a frozen �ux. From a stability
viewpoint, it is necessary that an individual cell’s permissible time step be at least twice the
global minimum value if a frozen �ux value is to be used, thus the groups are decided by
the criteria

G1 if �ti62�t

or

G2 if �ti¿2�t

After each update j (local time step), the group distributions must be re-evaluated and the �ux
values calculated for the G1 cells. In addition, consideration must be given to the interaction
between cells contained within any G1=G2 interface. This can be achieved by treating any
G2 cells contained within the computational stencil of G1 cells as G1 cells (such that the
�ux is re-evaluated), and by limiting the time step of these modi�ed G2 cells to the G1 cell
value. Once the cells have been advanced to the point in time kmax�t, the global time step
is complete and all of the �ux values are recalculated and the process is repeated.

5.2. Local time stepping using full time integration (LTS2)

Unlike the previous approach, Kleb et al. [22] presented a local time stepping technique that
was based upon advancing individual cells to a level near that allowed by the CFL limit,
which is in essence much more of a local time stepping strategy. Linear interpolation was
then used at the interface regions between cells at di�erent levels to extract the information
at the correct point in time. Although this method is more e�cient than the previous scheme
in that fewer updates are performed, the algorithm needed to perform the integration is more
complex.
To initiate the local time stepping procedure, the local time step values �ti are calculated

and the corresponding minimum value, �t is found. Each cell is then assigned a value of mi
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which corresponds to the cells local time step’s power of 2 multiple of �ti calculated from

mi= int
[
log(�ti=�t)
log(2)

]

This relationship is such that

2mi6
�ti
�t

¡2mi+1

Following this assignment, the local time steps are re-evaluated in terms of power of two
multiples of the minimum time step. This is accomplished by de�ning new local time step
values, �t∗i , whereby

�t∗i =�t2mi

The basis of the integration procedure is to form a series of ‘passes’ over the mesh and to
update particular cells to their permitted point in time. On each pass, cells with a particular
m-value will be integrated. On the �rst pass, pass 0, all of the cells are updated by their
respective time steps. On subsequent passes, those cells for which 2m is an integer multiple
of the pass number, are integrated. This is illustrated in Figure 1, where the solution is
advanced from time tn to tn+1 corresponding to a global time step and the cells shown have
m-values ranging from 0 to 3. Given that the maximum m-value is 3, the corresponding
time interval is 8�t. The �gure serves to demonstrate the integration sequence for speci�c
m-values rather than the distribution of m-values which is discussed later. The sequence is
shown and the numbers for each update correspond to the pass number at which the update
takes place. As can be seen, cells for which m=0 are always updated. If the cells which
have a particular m-value are to be integrated, then any cells having a lower value of m
will also be updated. The total number of passes which take place over a global time step
depends on the maximum value of m. If mmax = max(mi), then if Ptotal is the total number of
passes

Ptotal = 2mmax

where the pass number takes on the values Pnumber = 0; 1; : : : ; 2mmax − 1. In Figure 1, mmax is 3
and a total of 8 passes are made.
Pervaiz and Baron [23] applied a similar strategy for chemically reactive �ows, although a

di�erent integration procedure was followed. The authors noted that it was necessary to place
an upper limit on the m-values, and that the distribution should be such that no time step
should be greater than four times that of the neighbouring cells. In tests conducted by the
authors, it was found necessary to limit the maximum m-value used on the basis of stability
in one of the test cases reported. As the local time stepping strategy employs a �xed value of
�t throughout a single global time step, which is based on the minimum acceptable value (in
terms of the CFL condition) at the start of the integration sequence, the conditions may be
such that at some point during the integration, �t may exceed the current permissible time
step a particular cell(s), noting that the permissible time step values will change during update
procedure. In such an instance the solution will become numerically unstable. In addition to
ensure the information between regions of cells of di�ering m-values is correctly propagated,
a strategy has been developed to create an interface to connect the regions with cells of
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Figure 1. Integration strategy for LTS2.

intermediate m-values. To illustrate the methodology, consider the case where a region of cells
with m=m1 adjoins another region of cells with m=m2, where m2¿m1. It is then necessary
to mark a number of the m2 cells as the interface and modify the m-values accordingly. The
strategy developed is based on the information travelling at a constant speed over a uniform
mesh of grid size �x. Assuming a CFL number of 1 then

Total distance travelled =number of time steps×�x

Following this notion, then the number of cells transversed is given by 2n − 1. Conceptually,
it is then necessary to rede�ne the m-values for a total of 2n−1 cells. For example in the case
of a region of cells with m-values of 0 adjoining cells with m set to 2, the �rst neighbouring
2 cell would be marked as a 0 cell, and the next two 2 cells become 1 cells, as illustrated in
Figure 2. Furthermore, this can be generalized to say that the �rst (20) m2 cell should become
a m1 cell, the next two (21) cells should become m1 +1 cells, the next four (22) cells become
m1 + 2 cells, and in general the number of cells marked as m1 + b cells is given by 2b.
The strategy presented above is based on an analogy of information propagating with a

constant speed over a uniformly spaced mesh. The procedure outlined was used as a starting
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Figure 2. Construction of the interface region for LTS2.

point to develop an algorithm for constructing the interface region on irregular grids. In
experiments conducted by the authors [24] it was found that in considering how many cells
should be used to construct the interface region, the most crucial factor was the number of
cells to be rede�ned as m1 cells. It was observed that di�erent results were obtained when the
total number of cells used in the interface region remained constant, but the distribution was
varied. In practice it was found that given a region of m1 cells which adjoins a region of m2
cells, (where m2¿m1), it was necessary to rede�ne a minimum of two of the m2 cells to m1
cells and the distribution detailed above could be followed for the remainder of the interface
region. To allow for a wide range of varying conditions, it was decided to set the �rst four
cells of any interface region to be m1 cells and follow the trend described above such that a
total of 2n−1 +3 cells were modi�ed. In the case of a region of 0 cells adjoining a group of 2
cells, this would mean modifying the �rst four 2 cells to 0 cells and then changing the next
two cells to 1 cells. This strategy was found to give good results in the range of problems
considered [24].
In the work being presented, the treatment was adapted to channels with trapezoidal cross-

sections and was incorporated into the local time stepping philosophy. In particular, the source
term values were frozen in a manner analogous to the frozen �ux when the LTS1 method
was used.

6. TEST CASES

The test cases presented were all selected as analytic solutions are available. Results from
two steady state and two transient cases are shown. In the case of the steady state problems,
a run time was established that led to a converged solution for each mesh, and comparative
results were obtained using this value.
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6.1. S1 �ow through a converging/diverging channel

This test case was introduced by Garc��a-Navarro et al. [25]. The channel is constructed from
a series of rectangular cross-sections which form a sinusoidal width contraction and expansion
at the centre of the channel. The width decreases from a maximum width of 5m down to the
critical width (bcrit) of 3.587m, which induces critical �ow. The width pro�le is de�ned by

b(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5; x6100

5− (5− bcrit) cos2
[
(x − 250)
300

�
]
; 100¡x¡400

5; x¿400

The initial conditions are a uniform depth of 2m and zero discharge everywhere except at the
upstream boundary, where the discharge is maintained at 20m3 s−1 throughout the simulation.
A weir boundary condition with a height of 0.1m is employed at the downstream end of the
reach such that the relationship between the velocity and the water depth is

u= 2
3 Cd(2gHw)

1=2

where Cd is the coe�cient of discharge and is taken to be 0.6, and Hw is the depth of the
water above the level of the weir. An analytic solution is generated by considering the depth
pro�les obtained by applying Bernoulli’s equation to the upstream and downstream sections
which are connected via a jump relationship.

6.2. S2 �ow through a trapezoidal channel

This test case was proposed by MacDonald et al. [26] and forms part of a series of cases
considered in which problems with analytical solutions are generated for rough channels with
non-�at beds. The channel considered is a 1 km prismatic trapezoidal reach in which the
�ow is subcritical at the in�ow and out�ow and contains a hydraulic jump. A discharge
of 20m3 s−1 is imposed at the upstream boundary and the downstream depth is �xed at
1.3449963m throughout the simulation. The Manning’s coe�cient is set to 0.02 and the bed
slope is given by

S0 =
(
1− 400[10 + 2ŷ(x)]

g[10 + ŷ(x)]3ŷ(x)3

)
ŷ′(x) + 0:16

[10 + 2ŷ(x)
√
2]4=3

[10 + ŷ(x)]10=3ŷ(x)10=3

where ŷ is the analytical depth pro�le

ŷ(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0:723449
[
1− tanh

(
x

1000
− 3
10

)]
; 06x6300

0:723449
{
1− 1

6
tanh

[
6
(

x
1000

− 3
10

)]}
; 300¡x6600

3
4
+

3∑
k=1

ak exp
[
−20k

(
x

1000
− 3
5

)]
+
3
5
exp

( x
1000

− 1
)
; 600¡x61000
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and

ŷ′(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0:723449× 10−3sech2
(

x
1000

− 3
10

)
; 06x6300

−0:723449× 10−3 sech2
[
6
(

x
1000

− 3
10

)]
; 300¡x6600

− 1
50

3∑
k=1

kak exp
[
−20k

(
x

1000
− 3
5

)]
+

3
5000

exp
( x
1000

− 1
)
; 600¡x61000

with a1 =− 0:111051, a2 = 0:026876 and a3 =− 0:217567. The width at the base of the chan-
nel is 10m and the walls have a side slope of unity. A uniform depth of 1.3449963m is
employed as the initial condition together with zero discharge everywhere except at the up-
stream boundary.

6.3. U1 dam-break

The standard dam-break problem was considered with an upstream to downstream depth ratio
of 100:1, whereby the depth to the left of the dam is set at 100m and the depth to the
right at 1m. The initial velocity is 0m s−1 throughout the channel. The length of the channel
is 1000m and the width is set to 1m. In this example, transmissive boundary conditions
are used at both the upstream and downstream boundaries. As no source terms are present
in this problem, the di�erent time step procedures can be contrasted with the source term
calculations removed. The results shown correspond to t=10 s and the analytical solution is
produced using the procedure outline by Glaister [27].

6.4. U2 a tidal �ow over steps

The last test case illustrated was proposed at a workshop on dam-break wave simulations and
the details were presented in a paper by Zhou et al. [28]. The problem considers the �ow of
a tidal wave over a step where the channel bed is de�ned as

z(x)=

⎧⎪⎨
⎪⎩
8 if

∣∣∣∣x − 1500
2

∣∣∣∣615008
0 otherwise

with the initial and boundary conditions

h(x; 0) =H (x)

u(x; 0) = 0

h(0; t) =H (0) + 4− 4 sin
[
�
(

4t
86 400

+
1
2

)]

u(L; t) = 0
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The analytical depth and velocity pro�les are

h(x; t) =H (x) + 4− 4 sin
[
�
(

4t
86 400

+
1
2

)]

u(x; t) =
(x − L)�
5400h(x; t)

cos
[
�
(

4t
86 400

+
1
2

)]

where H (x)=H (0) − z(x), H (0)=16m, L=1500m and the channel is smooth. The results
shown are at time t=32400 s.

7. RESULTS

In order to illustrate the bene�ts of utilizing local time stepping, solutions were obtained on
a symmetric irregular mesh whereby the cells at the beginning and end of the channel were
a set number of times larger than the cells at the channel centre. Tests were conducted where
this scaling factor varied from 1 (a regular mesh) to 128 [24]. It was observed that as the
scale factor increased, so too did the gains from using a local time stepping approach. The
results presented in this paper were generated on the 128 mesh. For the S1, S2 and U2 results,
the maximum m value utilized by the LTS2 algorithm was 5. In the case of the dam-break
problem, U1, the value had to be reduced to 3 on stability grounds. Note also that for the
dam-break problem, the source term calculations were removed from the update procedure in
order to analyse the run time results on the basis of only the �ux calculations.
From Figures 3 and 4, it can be seen that both LTS procedures produce a depth pro-

�le which is indistinguishable from the GTS results. In all cases the solutions match the
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Figure 3. Depth pro�le for S1.
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Figure 4. Depth pro�le for S2.
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Figure 5. Depth pro�le for U1.

analytical results and the discontinuity is well resolved. Figure 5 shows the results obtained
for the dam-break problem, and the bore region is highlighted in Figure 6. Over most of the
domain the numerical solutions are in close agreement to the analytical results. Note that the
bore is resolved over a greater number of cells than is generally considered acceptable for a
shock capturing scheme, and this is a consequence of the chosen mesh and the implementation
of a �rst-order scheme. Such a combination would not be used in practise but was chosen
here to illustrate the di�erences between global and local time stepping. In this instance the
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Figure 6. Depth pro�le for U1—bore region.
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Figure 7. Depth pro�le for U2.

LTS1 method resolves the bore over the fewest number of cells and the GTS and LTS2 results
are fairly similar. The need to restrict the LTS2 algorithm to four levels of temporal embed-
ding (mmax =3) on stability grounds reduced the improvements attainable using the approach.
Figure 7 shows the results obtained for problem U2 for which the solution should be a uniform
elevation of 20m. In this instance the results are visually identical and the discontinuities in
the pro�le are well resolved.
Table I summarizes the results of the run time comparison, relative to the GTS calculations.

Note that two factors have been considered, the recorded CPU time which was used to
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Table I. Comparative run time and �ux count e�ciency gains using LTS.

Local time stepping
Local time stepping using full time
using frozen �ux integration

Flux Flux
Time evaluation Time evaluation

Test reduction reduction reduction reduction
case (%) (%) (%) (%)

S1 29.9 69.7 54.0 65.2
S2 28.2 67.6 53.7 65.1
U1 17.0 67.8 44.7 62.0
U2 36.4 66.7 56.0 64.5
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Figure 8. Depth pro�le for U1 with Superbee—bore region.

obtain the percentage time reduction, and a �ux evaluation reduction calculation in which
the solver procedures were modi�ed to count the number of �ux calculations. This measure
gives a re�ection of the improvement without the overhead costs of implementing the LTS
procedures. It can be seen that there is a marked di�erence between the recorded time gains
for the two procedures but that the �ux gain values are quite similar for all of the cases. The
time gains are signi�cantly less for the LTS1 method over the LTS2 scheme which is in line
with expectations given that the LTS1 method updates the solution at each cell for every time
step. It is also noticeable that for both methods, the time gains are signi�cantly less for the
dam-break problem where the source term calculations were removed. The data in Table I
also suggests that the bene�ts of employing such a method increase as the complexity of the
calculations increase such that the implementation costs re�ect an overall lower percentage of
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Table II. Comparative run time and �ux count e�ciency gains using LTS including
a higher order scheme and di�erent source term treatment.

Local time stepping
Local time stepping using full time
using frozen �ux integration

Flux Flux
Time evaluation Time evaluation

Test reduction reduction reduction reduction
case (%) (%) (%) (%)

U1 - Superbee 30.6 68.0 53.6 65.5
S2 - pointwise 22.2 67.3 51.8 65.1
S2 - pointwise
and superbee 32.3 65.1 51.7 65.2
U2 - pointwise 30.5 66.7 53.8 64.5
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Figure 9. Depth pro�le for S2—comparison of source terms.

the total run time. This has been veri�ed in another experiment in which the solutions to the
dam-break problem were obtained on the same mesh using a second-order version of Roe’s
scheme utilizing the Superbee �ux limiter. The solutions obtained in the region of the bore
are shown in Figure 8. In comparison to the �rst-order results it can be seen that overall the
results are more similar and resolve the bore more sharply over much fewer cells. As before,
the GTS and LTS2 methods produce similar results whilst the LTS1 pro�le is marginally
better. Table II highlights the fact that the recorded time gains for both LTS approaches are
signi�cantly greater in the case of the second-order solver algorithm and more in line with
the values noted for the test cases in which source terms were included in the calculation.
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Figure 10. Dishcarge pro�le for S2—comparison of source terms.
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Figure 11. Depth pro�le for U2—pointwise source terms.

The results presented were all obtained using the upwind treatment for the source terms
outlined in Section 4. A comparison has also been made between this treatment and the
standard pointwise implementation for a range of problems [24, 29]. It has been observed
that the upwind treatment consistently produces better results in �ows where source terms
are present. This has been particularly evident in steady state �ows where, although depth
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Figure 12. Velocity pro�le for U2 velocity—pointwise source terms.
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Figure 13. Velocity pro�le for U2 velocity—upwind source terms.

pro�le may be satisfactory, discrepancies in the discharge solution (where a constant value
should be obtained) can occur when a pointwise treatment is used. In comparing the upwind
results with those obtained when a pointwise treatment is used together with a second-order
version of Roe’s scheme (through using the Superbee �ux limiter), the use of a limiter func-
tion reduces the perturbations from the uniform value though the results are still generally

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:775–799



TIME ACCURATE LOCAL TIME STEPPING 797

not as good as those produced by the upwind treatment. This is illustrated in Figures 9 and
10, which show the depth and discharge pro�les obtained for test case S2 using the up-
wind source terms, pointwise source terms and pointwise source terms in conjunction with
the Superbee limiter. Note only the GTS results are shown for clarity, as for this case the
LTS1 and LTS2 results with the respective source term and �ux functions were indistin-
guishable from the GTS results. This is also illustrated for the unsteady case U2 in Figures
11 and 12, where the depth and velocity pro�les obtained using a pointwise approach are
shown. Note that GTS, LTS1 and LTS2 results are identical. Figure 12 can be compared to
Figure 13, which shows the velocity results when the upwind treatment is used. Erroneous
spikes can be seen in the results obtained using the pointwise treatment which are not present
in the upwind results (note the change in scale between the �gures). In this instance it can
be seen that the upwind treatment gives better resolution of the �ow characteristics over the
steps.

8. CONCLUSIONS

Two LTS strategies developed for the Euler equations have been presented and applied to the
shallow water equations of open channel �ow. The strategies were implemented within an
explicit �nite volume framework using Roe’s scheme which was used in conjunction with an
upwind treatment for the source terms. Further consideration was given to the implementation
of the two LTS strategies by developing interface treatments to ensure that information was
correctly propagated between cells at di�erent temporal levels. A comparison was performed
between conventional global time stepping and using an LTS approach though a series of test
cases. The results illustrate that using LTS can lead to a reduction in run times for both steady
and transient problems. It was also illustrated how LTS can improve solution accuracy in the
vicinity of bores, which was demonstrated for the dam-break problem. In addition it was
highlighted how using an upwind source term treatment can be bene�cial for �ows dominated
by the geometry.
In view of these results the LTS strategies are believed to be of use in reducing run

times and increasing accuracy. Research is currently underway to apply these techniques
to the two-dimensional shallow water equations and for these the LTS is expected to o�er
more signi�cant savings as the regions requiring small time steps will represent an even
smaller proportion of the total area than in one dimension. Commercial software used in this
�eld often adopts the Preismann or Abbott-Ionescu schemes [1], rather than the Riemann-
based one presented here. These formulations are implicit, conceptually simple and allow
for the incorporation of hydraulic units such as sluices, bridges, weirs, etc. However, the
Riemann-based approach has the advantage of dealing correctly with transitions in the �ow.
The Priesmann and Abbott-Ionescu schemes have di�culty with this [30] and commercial
codes use a variety of �xes to deal with this problem, often by neglecting the non-linear
term as the Froude number approaches unity. The results of the research presented here still
have implications for commercial software either through the implementation of LTS with
the Preismann or Abbott-Ionescu schemes or the development of Riemann-based methods
for irregular geometries [31] and hydraulic structures that would allow their application in
practical situations.
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